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ABSTRACT

Context. Prominence threads are very long and thin flux tubes which are partially filled with cold plasma. Observations
have shown that transverse oscillations are frequent in these solar structures. The observations are usually interpreted
as the fundamental kink mode, while the detection of the first harmonic remains elusive.
Aims. The properties of oscillations in threads are greatly affected by the density distribution along the flux tube.
Here, we aim to study how the density inhomogeneity in the longitudinal and radial directions modify the periods and
damping times of kink oscillations, and how this effect would be reflected in the observations.
Methods. We solve the ideal magnetohydrodynamics equations through two different methods: a) performing 3D numer-
ical simulations, and b) solving a 2D generalised eigenvalue problem. We study the dependence of the periods, damping
times and amplitudes of transverse kink oscillations on the ratio between the densities at the centre and at the ends of
the tube, and also on the average density. We apply forward modelling on our 3D simulations to compute synthetic H↵
profiles.
Results. We confirm that the ratio of the period of the fundamental oscillation mode to the period of the first harmonic
increases as the ratio of the central density to the footpoint density is increased or as the averaged density of the tube is
decreased. We find that the damping times due to resonant absorption decrease as the central to footpoint density ratio
increases. Contrary to the case of longitudinally homogeneous tubes, we find that the damping time to period ratio also
increases as the density ratio is increased or the average density is reduced. We present snapshots and time-distance
diagrams of the emission in the H↵ line.
Conclusions. The results presented here have implications for the field of prominence seismology. While the H↵ emission
can be used to detect the fundamental mode, the first harmonic is barely detectable in H↵. This may explain the lack
of detections of the first harmonic. A combination of different spectral lines is required to get information about the
period ratio and to use it to infer physical properties of the threads.
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1. Introduction

Solar prominences are inhomogeneous condensations of cool
plasma in the corona (e.g., Lin et al. 2005; Berger et al.
2008). The fine structure of prominences consists of very
long and thin magnetic flux tubes partially filled with cold
plasma (in comparison with the hot coronal plasma), which
usually are referred to as threads or fibrils (Okamoto et al.
2007). The typical length of these magnetic flux tubes is
of the order of 105 km, with a radius between 50 km and
500 km. The length of the region of the tube filled with
cold plasma inferred from H↵ observations is in the range
of 3000 km to 28000 km (Lin et al. 2008; Lin 2011).

Observations have revealed the presence of transverse
oscillations in prominence threads, with typical periods
from 1 to 20 minutes (Lin et al. 2007, 2009; Ning et al.
2009). These oscillations have usually been interpreted as
magnetohydrodynamic (MHD) kink waves (see, e.g., Ter-
radas et al. 2008b; Soler et al. 2010a; Arregui et al. 2011).

Their properties have been used to perform prominence
seismology (Arregui et al. 2012; Ballester 2014; Arregui
et al. 2018) with the intention of inferring information
about the physical parameters of the plasma and/or the
magnetic field (Montes-Solís & Arregui 2019).

For instance, the comparison of the periods of the funda-
mental mode, P0, and the corresponding first overtone, P1,
can be used to obtain information about the longitudinal
distribution of density. The ratio of the damping time to the
period has been commonly used to infer the radial distribu-
tion and determine which physical mechanism is responsible
for that attenuation. In a longitudinally homogeneous tube,
the period ratio is P0/P1 = 2 (Edwin & Roberts 1983) but
it differs from 2 if a longitudinal inhomogeneity is consid-
ered. Andries et al. (2005a,b) showed that for the case of
coronal loops, which are denser at the footpoints than at the
apex, the period ratio is smaller than 2. Later, Díaz et al.
(2010) showed that for a prominence thread, which is denser
at the centre of the tube, the period ratio is always larger
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than 2, a result that was confirmed by, e.g., Arregui et al.
(2011) and Soler & Goossens (2011). The relation P0/P1

has been used to show that the ratio between the average
density of the tube and the density at its centre is very
small, which implies that there are very strong gradients
of density along the threads (Soler et al. 2015). Regarding
the damping time to period ratio, Soler et al. (2009, 2014)
analysed several possible damping mechanisms and deter-
mined that the process that better describes the data from
observations of prominence threads is resonant absorption
(Ionson 1978; Ruderman & Roberts 2002; Arregui et al.
2008; Soler et al. 2010a). This phenomenon occurs when
there is a smooth variation between the internal and exter-
nal densities of the flux tube and depends on the thickness
of this radial transition layer and on the density contrast
between the internal and external plasmas.

The previously mentioned works usually focused on the
density inhomogeneity of the threads in one direction only,
namely the longitudinal or the radial one. In that way, an-
alytical expressions could be provided for the periods and
damping times of oscillations in tubes with longitudinal uni-
form density or represented by piecewise constant models.
On the contrary, the consideration of the inhomogeneity
along those two directions at the same time requires a nu-
merical treatment (Arregui et al. 2005, 2011).

Here, we use a model of a prominence thread in which
the density follows a Lorentzian profile along the longitudi-
nal direction. The main parameter that describes this pro-
file is the longitudinal density ratio, �, which is defined as
the ratio between the densities at the centre and at the
ends of the tube. For prominence threads, this parameter
takes values larger than 1. In the radial direction there is a
smooth transition layer that connects the internal plasma
with the external plasma. The variation of density in this
radial transition layer is given by a sinusoidal profile. Then,
we study the properties of transverse kink oscillations by
applying two different methods. In the first place, we use
the numerical code MoLMHD (Terradas et al. 2016, 2018),
that solves the non-linear ideal MHD equations, to run 3D
simulations and compute the full temporal evolution of the
flux tube. Then, we compare the obtained results with the
solutions from a 2D generalised eigenvalue problem (Soler
et al. 2015). Numerical simulations are very computation-
ally costly but they have the advantage that they cap-
ture the non-linear dynamics of this kind of oscillations.
In contrast, the eigenvalue problem is restricted to the lin-
ear regime but it is much faster and it is more appropriate
for performing a parametric analysis of the periods and
damping times. Therefore, both methods complement each
other.

We study how the periods, damping times and ampli-
tudes of the fundamental and first harmonic modes vary
with the longitudinal density ratio and with the average
density. We compute the period ratio P0/P1 and the damp-
ing to period ratio, and compare the obtained results with
those corresponding to tubes with longitudinally uniform
profiles of density.

After this analysis, we go a step further in our numeri-
cal research and use the results from the 3D simulations to
perform forward modelling and provide synthetic profiles in
the H↵ line. We use the approximate method described in
Heinzel et al. (2015). We compute the H↵ intensity along
two different lines of sight (parallel and perpendicular to the
direction of oscillation) and provide snapshots that show

the longitudinal and radial distribution of the density of
prominence threads. We discuss the observational signa-
tures of the transverse oscillations and how the strong vari-
ation of density along the thread may have implications for
prominence seismology.

The synthetic H↵ profiles do not only provide informa-
tion about the amplitudes, periods and damping times of
the kink oscillations. They also include evidences of non-
linear processes that are taking place in the threads. For
instance, large velocity gradients at the boundaries be-
tween the internal and external layers of the flux tube trig-
ger shear instabilities, like the Kelvin-Helmholtz instability
(KHI, Chandrasekhar 1961; Browning & Priest 1984; Ter-
radas et al. 2008a). As a consequence, large deformations
appear at those boundaries as the instability develops (see,
e.g., Antolin et al. 2014; Magyar et al. 2015; Terradas et al.
2018). We discuss how the variations in intensity of the H↵
profiles are related to these non-linear effects.

The present work is organised as follows. In Section 2
we describe the model we use to represent an inhomoge-
neous flux tube, the equations that govern its dynamics
and the methods applied to solve those equations. In Sec-
tion 3 we analyse the characteristics of the transverse os-
cillations, comparing the cases of uniform and non-uniform
tubes. Then, in Section 4 we perform forward modelling to
compute synthetic H↵ profiles and show the observational
signatures of several linear and non-linear features of the
oscillations. Finally, our conclusions and a brief discussion
on possible improvements are presented in Section 5.

2. Model and numerical setup
2.1. Flux tube model

We represent prominence threads as straight flux tubes with
inhomogeneous density embedded in a hotter and lighter
background (which represents the solar corona). In the lon-
gitudinal direction the density follows a Lorentzian profile:

⇢i(z) =
⇢i,0

1 + 4 (�� 1) z2/L2
z

, (1)

where ⇢i,0 is the density at z = 0, Lz is the length of the
tube, and � = ⇢i,0/⇢i(z = Lz/2) is the longitudinal density
ratio. The average density of this Lorentzian profile is given
by

h⇢ii =
1

Lz

Z Lz/2

�Lz/2
⇢i(z)dz = ⇢i,0

arctan
p
�� 1p

�� 1
. (2)

According to this formula, the value of h⇢ii decreases as �
increases.

In the transverse direction to the tube, the density is
radially uniform inside the tube with a smooth transition
between the internal and external values of density, ⇢in and
⇢ex, respectively. In this transition layer the density varies
as

⇢(r, z) =
⇢i(z)
2


1 +

⇢ex
⇢i(z)

�
✓
1� ⇢ex

⇢i(z)

◆
sin

✓
⇡
r �R

l

◆�
, (3)

with r =
p
x2 + y2, R the radius of the tube and l the

width of the transition layer. In this work, the relations
between the internal and external densities and between
the parameters l and R are set to ⇢i,0 = 100⇢ex (where
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Fig. 1. Sketch of the equilibrium state for a thread with a
density ratio of � = 10. Density contours for ⇢ = 25⇢ex (red),
⇢ = 50⇢ex (green), ⇢ = 75⇢ex (dark blue), and ⇢ = 100⇢ex (light
blue). Magnetic field lines, with line-tying conditions applied at
the top and bottom planes, are shown in grey colour.

⇢ex = ⇢ref and ⇢ref is the reference value of the coronal
density) and l/R = 0.3, respectively.

The flux tube model is displayed in Figures 1 and 2. A
3D sketch of an inhomogeneous thread with � = 10 is shown
in the former: the red, green and blue surfaces correspond
to different density contours, and the vertical grey lines
show the magnetic field lines. Figure 2 displays the vertical
distribution of density for different values of the density
ratio (top panel) and its radial profile at the tube’s mid-
height (bottom panel).

To perform the simulations we consider a numerical do-
main of �5 < x/L0 < 5, �5 < y/L0 < 5 and �Lz/2 <
z/L0 < Lz/2, where L0 = 1 Mm is the reference length of
the system and Lz = 50R, with R = L0. We note that the
considered ratio Lz/R produces a tube that is thicker than
what is expected for a prominence thread. For instance,
the observations performed by Okamoto et al. (2007), Lin
et al. (2008), and Lin (2011) provided much larger values of
the ratio Lz/R, ranging from 400 to 2000. The reason why
we chose this small ratio is related to the computing time
of the simulations: the oscillation period of a flux tube is
proportional to its length, as shown by Edwin & Roberts
(1983), so the study of transverse oscillations of tubes with
much larger values of Lz/R requires much longer comput-
ing times. The investigation we present in this paper re-
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Fig. 2. Top panel: vertical profiles of density for several values
of the density ratio: � = 5 (black), � = 10 (green), � = 20 (light
blue), � = 50 (dark blue), and � = 100 (red). Bottom panel:
radial profile of density at z = 0.

quired performing a considerable number of simulations,
so it would have been impractical to use tubes with much
higher values of Lz/R. Nevertheless, we expect that this
choice does not affect the general validity of our results,
as they mainly depend on the longitudinal variation of the
tube properties and not on its actual length or radius. In
addition, we consider the presence of a uniform longitudi-
nal magnetic field of B0 = 10 G which permeates the whole
domain and, in combination with the reference value of the
coronal density ⇢ref = 3.656 ⇥ 10�13 kg m�3, gives a ref-
erence Alfvén speed of cA,ref = B0/

p
µ⇢ref ⇡ 1494 km s�1

and a reference time t0 = L0/cA,ref ⇡ 0.67 s.
The pressure is uniform in the whole domain, which

implies that the system is initially in mechanical equilib-
rium. We use a value of P = 0.005 Pa, which corresponds
to a plasma beta of � = 2µ0P/B2

0
⇡ 0.013. In this low-�

limit, pressure has a negligible effect on the linear regime
of transverse oscillations. However, it becomes relevant in
the non-linear regime. Hollweg (1971), Rankin et al. (1994,
1995), Tikhonchuk et al. (1995) and Terradas & Ofman
(2004) demonstrated that the ponderomotive force causes
longitudinal flows that tend to accumulate the mass at the
centre of the tube. In a pressureless plasma this accumula-
tion would go on without bound. On the contrary, the effect
of pressure is to prevent this unlimited growth and turn it
into an oscillatory behaviour.

We apply line-tying boundary conditions at the ends of
the flux tube to represent the field lines anchoring in the
photosphere, meaning that the three components of the ve-
locity are set to zero and the normal component of the
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magnetic field is fixed, while the normal derivatives of the
rest of variables are equal to zero. For the lateral planes,
closed boundary conditions are chosen. We note that these
conditions may produce unwanted reflections of perturba-
tions but we have set the lateral boundaries far enough from
the numerical domain of interest so they have a negligible
influence on the evolution of the flux tube.

2.2. Methods and equations

On the one hand, we perform 3D simulations using the nu-
merical code MoLMHD (Terradas et al. 2016, 2018), which
solves the non-linear ideal MHD equations:

@⇢

@t
+r · (⇢V ) = 0, (4)

@ (⇢V )

@t
+r ·

✓
⇢V V + P I� BB

µ
+

B2

2µ
I
◆

= 0, (5)

@B

@t
= r⇥ (V ⇥B) (6)

@P

@t
+r · (�PV ) = (� � 1)V ·rP, (7)

where ⇢, V , B and P represent the density, velocity, mag-
netic field and pressure, respectively, I is the unit tensor, µ
is the magnetic permeability and � is the adiabatic index.
These equations are discretised using a combination of a
sixth-order central finite-differences scheme and a WENO
scheme (see details in Terradas et al. (2015)) and are ad-
vanced in time through a 3rd order TVD Runge-Kutta
method (Harten 1983).

On the other hand, we solve an updated version of the
2D generalised eigenvalue problem described in Soler et al.
(2015). That work did not take into account the presence of
the transition layer between the internal and external densi-
ties but considered the existence of a density jump. There-
fore, it could not predict the damping of the oscillations
associated with the phenomenon of resonant absorption.
For the present work, the effect of transverse inhomogeneity
has been included in the solution of the eigenvalue problem.
For this method, we linearise the basic MHD Equations (4)
– (7). We only consider transverse oscillations, which are
accurately described in the � = 0 approximation. There-
fore, we drop the effect of gas pressure for simplicity. Unlike
in Soler et al. (2015), the considered model is transversely
non-uniform and the ideal global mode perturbations are
singular (resonant) at the specific radial position where the
global mode frequency matches the local Alfvén frequency.
In order to avoid the ideal singularity, which is not tractable
numerically, here we need to add a small diffusive term in
the induction equation. This term does not alter the over-
all behaviour of the perturbations, neither it modifies the
eigenfrequencies, as long as it is sufficiently small (see e.g.,
Arregui et al. 2011). So, the relevant linearised equations
for the computation of eigenvalues are

⇢0
@v

@t
=

1

µ
(r⇥ b)⇥B0, (8)

@b

@t
= r⇥ (v ⇥B0)� ⌘r⇥r⇥ b, (9)

where v = (vr, v�, 0) and b = (br, b�, bz) are the velocity
and magnetic field perturbations, respectively, expressed in
a cylindrical coordinate system with the z-axis aligned with
the flux tube axis, ⇢0 and B0 = (0, 0, B0) are the back-
ground density and magnetic field, respectively, and ⌘ is
the coefficient of magnetic diffusion (assumed uniform). We
put the perturbations proportional to exp (im�), where m
is the azimuthal wavenumber, and set m = 1 correspond-
ing to kink modes. In addition, we express the temporal
dependence of the perturbations as exp (�i!t), where !
is the complex eigenfrequency. The period of the oscilla-
tion is P = 2⇡/Re(!) and the exponential damping time is
⌧D = �1/Im(!). Then, Eqs. (8) – (9) are expanded as

!vr = i
B0

µ⇢0

✓
@br
@z

� @bz
@r

◆
, (10)

!v� =
B0

µ⇢0

✓
bz
r

+ i
@b�
@z

◆
, (11)

!br = iB0

@vr
@z

� i⌘

✓
br
r2

+ i
1

r

@b�
@r

+ i
b�
r2

� @2br
@z2

+
@2bz
@r@z

◆
, (12)

!b� = iB0

@v�
@z

+ i⌘

✓
@2b�
@r2

+
1

r

@b�
@r

� b�
r2

� i
1

r

@br
@r

+ i
br
r2

� i
1

r

@bz
@z

+
@2b�
@z2

◆
, (13)

!bz = �iB0

✓
@vr
@r

+
vr
r

+ i
v�
r

◆
+ i⌘

✓
@2bz
@r2

+
1

r

@bz
@r

� bz
r2

� @2@br
@r@z

� 1

r

@br
@z

� i
1

r

@b�
@z

◆
. (14)

Following Soler et al. (2015), trapped kink oscillations
must satisfy the boundary conditions

@vr
@r

=
@v�
@r

=
@br
@r

=
@b�
@r

= 0, bz = 0, at r = 0, (15)

vr = v� = br = b� = bz = 0, at r = rmax, (16)

vr = v� = bz = 0,
@br
@z

=
@b�
@z

= 0, at z = ±Lz/2, (17)

where r = 0 is the centre of the tube and r = rmax is
a radial position sufficiently far away from the tube. Ide-
ally, rmax ! 1, while here we consider rmax = 20R for
practical purposes. Equations (10) – (14) together with the
above boundary conditions define a 2D generalised eigen-
value problem, where ! is the eigenvalue and the pertur-
bations form the vector of eigenfunctions. The eigenvalue
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problem is solved with a more efficient numerical method
than that used in Soler et al. (2015). The scheme is im-
plemented in a Wolfram Mathematica routine, where the
spatial integration of the equations in the r and z direc-
tions is done with finite elements in a 2D structured mesh
with a resolution of 400 ⇥ 40 cells. The mesh resolution
is non-uniform in the radial direction, as a much fine res-
olution is needed in the non-uniform transitional layer to
correctly describe the spatial scales associated with the res-
onant behaviour of the perturbations. The routine returns
the closest eigenvalue to an initially provided guess and can
be run iteratively to compute the solution as a function of
a specific parameter of the model.

2.3. Initial perturbation

Transverse kink oscillations in flux tubes have the az-
imuthal wavenumber m = 1 (Edwin & Roberts 1983;
Nakariakov & Verwichte 2005). To trigger this kind of os-
cillations in our simulations, we apply the following pertur-
bation to the x-component of velocity:

Vx(t = 0) = V0f(r) cos

✓
nkzz +

(n� 1)

2
⇡

◆
, (18)

where

f(r) =
⇢(r, z = 0)� ⇢ex

⇢i,0 � ⇢ex
, (19)

kz = ⇡/Lz and n is the longitudinal oscillation mode.
The amplitude of the perturbation is expressed in terms
of the internal Alfvén speed, V0 = ↵cA,in, where cA,in =
B0/

p
µ⇢i,0 and ↵ is a dimensionless factor that controls

the strength of the perturbation.
The factor f(r) is used to ensure that the perturbation

is applied to the tube and the transition layer but not to
the external background plasma.

If n = 1, the perturbation corresponds to the funda-
mental longitudinal mode of oscillation; n = 2 corresponds
to the first longitudinal overtone. In a tube with a uniform
density, the periods of these modes in the thin tube approx-
imation are given by (Edwin & Roberts 1983)

P0 =
2Lz

cA,in

r
1 + ⇢ex/⇢i,0

2
and P1 =

P0

2
, (20)

respectively. In the following sections we check how the in-
homogeneity in density modifies the oscillation periods of
these two modes.

We note here that the longitudinal dependence given in
Eq. (18) corresponds to an eigenfunction of kink oscillations
in longitudinally uniform tubes but not for the case with
a longitudinal inhomogeneity (Soler et al. 2010a; Arregui
et al. 2011; Soler et al. 2015). Therefore, this perturbation
will trigger additional longitudinal harmonics. However, we
expect that the contribution of these modes has a negligible
effect on the evolution of the transverse oscillations we are
interested in analysing.

3. Analysis of numerical results
In this section we present the results of our numerical
study of oscillations of inhomogeneous threads and perform

comparisons with the case of longitudinally homogeneous
threads. All the simulations analysed here used a numeri-
cal domain of 200⇥ 200⇥ 100 points, which corresponds to
a spatial resolution of 50 km in the x and y directions, and
of 500 km in the vertical direction.

3.1. Example simulations

We start by describing a simulation of the fundamental lon-
gitudinal mode of oscillation in an inhomogeneous thread
with a longitudinal density ratio of � = 10. This transverse
oscillation is triggered by applying the initial perturbation
given by Eq. (18) with n = 1. For this example, the ampli-
tude of the perturbation is V0 = 0.05cA,in.

The perturbation causes a lateral displacement of the
tube that follows a sinusoidal motion. The displacement
is maximum at the central position of the tube and zero
at its ends. This behaviour is illustrated by the density
snapshots displayed in Fig. 3. In addition to the oscilla-
tion around the equilibrium position, the horizontal cuts
of density at the height z = 0 (top panels of Fig. 3) show
that the shape of the originally cylindrical thread is de-
formed as time advances. This is a consequence of the trig-
gering of the KHI (Terradas et al. 2008a; Antolin et al.
2014; Magyar et al. 2015) and the non-linear generation
of fluting modes (Ruderman & Goossens 2014; Magyar &
Van Doorsselaere 2016; Terradas et al. 2018), which are
modes with azimuthal wavenumber m � 2 (Nakariakov &
Verwichte 2005) localised around the boundary of the tube
(Soler 2017).

Now, we turn our attention to the case of the first lon-
gitudinal overtone, with n = 2. For this simulation we used
the same value of V0 as in the previous case. Fig. 4 shows
that the first overtone has a node at z = 0: there is no lat-
eral displacement at the position where the tube is denser.
Conversely, it has two anti-nodes, one at each half of the
tube, which oscillate laterally in opposite directions. We
see that the amplitude of the displacement for this mode is
smaller than that for the fundamental mode although the
same value of V0 was used, and, consequently, the boundary
of the tube is less distorted.

In order to obtain a more precise description of the two
simulated oscillations, we have computed the displacement
of the centre of mass of the density cuts located at z = 0
and z = �Lz/4 = �12.5L0, respectively. The results are
presented in Fig. 5. The top panel confirms that for the
mode n = 1 the different longitudinal positions of the tube
oscillate in phase and it shows that the amplitude of the
oscillation decreases with time. The main reason for this
attenuation is the linear process of resonant absorption,
which causes a transfer of energy from the global kink os-
cillation to localised Alfvén modes in the transverse inho-
mogeneous layer (Ionson 1978; Ruderman & Roberts 2002;
Arregui et al. 2008; Soler et al. 2010a). The non-linear ex-
citation of fluting modes (see e.g., Ruderman & Goossens
2014; Soler 2017) and the triggering of the KHI (Terradas
et al. 2018; Van Doorsselaere et al. 2021) also contribute to
the damping of the oscillation.

The bottom panel of Fig. 5 shows that for the first over-
tone there is no lateral displacement at z = 0. The displace-
ment at z = �Lz/4 follows a similar behaviour than that
of the fundamental mode but with smaller amplitude and
shorter period.
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Fig. 3. Snaphots of a simulation with � = 10, V0 = 0.05cA,in, n = 1, and a numerical domain of 200 ⇥ 200 ⇥ 100 points. Top:
density colour maps at z = 0. Bottom: density colour maps at y = 0. Dashed lines represent the density contour ⇢ = 50⇢ref at
t = 0.
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Fig. 4. Snaphots of a simulation with � = 10 and n = 2. Top: density colour maps at z = �Lz/4 = �12.5L0. Bottom: density
colour maps at y = 0. Dashed lines represent the density contours ⇢ ⇡ 15⇢ref (top panels) and ⇢ = 50⇢ref (bottom) at t = 0.

We include in Fig. 5 black solid lines that represent os-
cillations of periods P0 and P1, respectively, which are given
by Eq. (20). These periods correspond to kink oscillations in
longitudinally uniform thin tubes with density equal to ⇢i,0.
The dotted black lines represent oscillations of tubes with
longitudinally uniform density given by the average density
of the Lorentzian profile, that is, ⇢i(z) = h⇢ii. We see that
the thread with � = 10 oscillates faster than the tube with
⇢i(z) = ⇢i,0, but slower than the tube with ⇢i(z) = h⇢ii, in
agreement with the findings of Soler et al. (2015). The os-
cillation periods of the tube with the Lorentzian profile are
P (n = 1) ⇡ 568t0 and P (n = 2) ⇡ 226t0. Therefore, the
period ratio follows the relation P (n = 1)/P (n = 2) > 2, in
agreement with the findings of Díaz et al. (2010), Arregui

et al. (2011), and Soler & Goossens (2011) for prominence
threads.

The dashed lines in the top panel of Fig. 5 show that
the attenuation is well described by an exponential decay
during the whole course of the simulation. This behaviour
seems to differ from the results for longitudinally uniform
threads obtained by Pascoe et al. (2012), Ruderman & Ter-
radas (2013), Magyar & Van Doorsselaere (2016), and Ter-
radas et al. (2018), who found that during the first periods
of the oscillation the damping is better fitted by a Gaussian
profile. Ruderman & Terradas (2013) and Magyar & Van
Doorsselaere (2016) found that the damping changes from
a Gaussian to an exponential profile at a switch time given
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Fig. 5. Displacement of the tube axis at different longitudinal
positions from simulations of modes n = 1 (top) and n = 2
(bottom). The solid and dotted lines represent oscillations with
periods given by Eq. (20) for tubes of uniform density equal to
⇢i,0 and h⇢ii, respectively. The dashed lines represent the expo-
nential decay of the displacement of the fundamental mode.

by

ts =
⇢i,0/⇢ex + 1

⇢i,0/⇢ex � 1
P. (21)

The switch time decreases with the density contrast be-
tween the internal and external plasmas. For the simula-
tions we are analysing here (with ⇢i,0 = 100⇢ex) the switch
time is approximately equal to one period. Therefore, the
behaviour represented in the top panel of Fig. 5 may agree
with the findings for longitudinally uniform tubes: the ap-
parent discrepancy may be a consequence of the chosen
value for the ratio ⇢i,0/⇢ex instead of a consequence of the
longitudinal variation of density given by the parameter �.

3.2. Parametric study

In the following sections we vary the value of the parameter
� (which implies a variation of the average density of the
threads) and study the general behaviour of the periods,
damping times and amplitudes of the transverse oscilla-
tions.

3.2.1. Fundamental longitudinal mode

The top left panel of Fig. 6 presents the results from a series
of simulations in which the initial perturbation corresponds
to the fundamental mode of oscillation, n = 1, and its am-
plitude is given by V0 = 0.05cA,in. It shows the transverse
displacement of the centre of mass of the tube as a func-
tion of time for the density profiles plotted in Fig. 2: black
crosses, green asterisks, light blue diamonds, dark blue tri-
angles, and red squares correspond to the longitudinal den-
sity ratios � = 5, � = 10, � = 20, � = 50, and � = 100,

respectively. We see in this panel that the amplitude, period
and the damping time of oscillation depend on the chosen
longitudinal density ratio. To extract these oscillation pa-
rameters from the data of the simulations, we fitted each
line to an exponentially decaying sinusoidal function,

⇠

R
= A0 sin

✓
2⇡

P
t

◆
exp

✓
� t

⌧D

◆
, (22)

where A0 ⌘ (⇠/R)
0

is the dimensionless amplitude of the
oscillation, P is the period, and ⌧D is the exponential damp-
ing time. Due to non-linear effects related to the initial large
amplitudes of the perturbations, some of the oscillations
would be better fitted by a Gaussian damping profile, as
shown by Magyar & Van Doorsselaere (2016). Neverthe-
less, we applied the exponential fitting function to every
oscillation to be able to compare the results from the simu-
lations with the solutions from the eigenvalue problem and
with results from previous studies.

The red asterisks on the top right, bottom left and bot-
tom right panels of Fig. 6 display the period, damping time
and damping ratio, respectively, as functions of the longi-
tudinal density ratio, �. We see in the top right panel that
larger density ratios correspond to shorter periods, with the
case of � = 100 having a period that is ⇠ 0.55 times the pe-
riod of the uniform tube (� = 1). This is the same behaviour
as the one presented in Fig. 3(a) of Soler et al. (2015). The
bottom left panel shows that the damping times also de-
crease as the density ratio is increased. Finally, the bottom
right panel shows that the dependence of the ratio between
the damping time and the period on the longitudinal den-
sity ratio is not so strong as for the previous parameters
but a small increase is found as � is increased.

The above described behaviour of the damping time to
period ratio is different from that of threads with no den-
sity variation along the axis. Ruderman & Roberts (2002),
Arregui et al. (2008) and Soler et al. (2009, 2010a) found
that in a longitudinally homogeneous thread with a radial
transition layer described by Eq. (3), the ratio of damping
time to period of the kink oscillations in the thin tube and
thin boundary regime is

⌧D
P

⇡ 2

⇡

1

l/R

✓
⇢i,0 + ⇢ex
⇢i,0 � ⇢ex

◆
. (23)

A similar result was obtained by Andries et al. (2005b) and
Arregui et al. (2005) in their studies of coronal loop os-
cillations although they considered the effect of longitudi-
nal density stratification. The reason for this different be-
haviour is that in the present work the density contrast
between the internal and external layers varies with the pa-
rameter �, while in the above mentioned studies the density
contrast was a constant (Dymova & Ruderman 2006).

The model we presented in Sect. 2.1 is more closely
related to that used by Arregui et al. (2011), who rep-
resented a prominence thread as a tube divided in three
longitudinally uniform regions with different values of den-
sity, connected by small transition layers. Arregui et al.
(2011) found that the damping ratio slightly increases for
very short threads. In our model, short threads are repre-
sented by large values of �.

Using Eq. (23) as a reference, the slight increase of ⌧D/P
with � can be roughly understood as follows. As shown by
Eq. (2), a larger � corresponds to a smaller average density.
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Fig. 6. Top left: displacement of the centre of mass as a function of time from simulations with n = 1 and with � = 5 (black
crosses), � = 10 (green asterisks), � = 20 (light blue diamonds), � = 50 (dark blue triangles), and � = 100 (red squares). Top
right: oscillation period as a function of the density contrast, �. Bottom left: damping time as a function of �. Bottom right: ratio
of damping time to period as a function of �. On the top left panel, solid lines represent fits of the numerical results. On the
remaining panels, the black solid and dashed lines correspond to the results obtained by solving the 2D eigenvalue problem for
n = 1 and n = 2, respectively. Symbols represent the results from the simulations. For n = 1, Pref = P0; for n = 2, Pref = P1.

If we use the variable h⇢ii instead of ⇢i,0 in Eq. (23), we find
that ⌧D/P increases as the average density decreases.

The solid lines in the top right and the bottom panels
of Fig. 6 show the results from the 2D eigenvalue prob-
lem. There is a remarkable agreement with the results from
simulations for the case of the oscillation periods. We see
some differences in the damping times, with the simulations
yielding smaller values, which means that the oscillations
are attenuated slightly faster. As mentioned in Sect. 3.1,
this could be caused by the non-linear generation of flut-
ing modes (Ruderman et al. 2010) and the triggering of the
KHI Terradas et al. (2018); Van Doorsselaere et al. (2021),
which grows by extracting energy from the flow. The numer-
ical diffusivity used in the code to prevent the appearance
of numerical noise also adds another damping mechanism.
None of these processes (either physical or numerical) are
taken into account by the 2D eigenvalue problem.

3.2.2. First longitudinal harmonic

In this section we use the same amplitude of the velocity
perturbation as in the previous one but here the perturba-
tion corresponds to the oscillation mode n = 2, that is, the
first longitudinal harmonic.

This oscillation mode presents a node at the middle po-
sition of the tube, so its centre of mass remains static and
cannot be used to analyse the displacement of the tube. For

this mode, the maximum displacements occur at z = �Lz/4
and z = Lz/4. We have chosen the former position for the
present analysis. We have computed the centre of mass con-
tained in the horizontal plane at that position and applied
Eq. (22) to fit its displacement. The results from this fit-
ting procedure are represented by blue diamonds on the top
right and bottom panels of Fig. 6.

As for the fundamental mode, both the oscillation pe-
riods and the damping times reduce as the longitudinal
density ratio is increased. However, in this case the depen-
dence on that parameter is even more pronounced than for
the case of the fundamental mode. This behaviour qualita-
tively agrees with the results of Andries et al. (2005a), who
found that the first longitudinal overtone is more affected by
the longitudinal variations of density than the fundamental
mode. Then, Fig. 6 shows that the period when � = 100
is ⇠ 0.3 times the oscillation period of the tube with uni-
form density, and the damping time is reduced to less than
a half. This means that the inhomogeneity in density has a
larger effect on the periods than on the damping times. In
addition, the ratio of damping time to period has a larger
increase with � than for the case with n = 1. This is related
to the large decrease of density contrast between the inter-
nal and external plasmas at z = �Lz/4 as the parameter �
increases.
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3.2.3. P0/P1 ratio

Now, we perform a comparison of the periods of the two os-
cillation modes previously analysed. The results are shown
in Fig. 7. For the case of a tube with uniform density this
ratio is P0/P1 = 2 in the thin tube approximation (Ed-
win & Roberts 1983). However, the value of the ratio varies
when longitudinal inhomogeneities in density are taken into
account. For the case of a prominence thread, the ratio is
always larger than 2 (Díaz et al. 2010). The left panel of
Fig. 7 shows that the period ratio grows as � increases.

Up to this point, we have focused on the dependence of
the oscillation parameters on the ratio of the central density
to the footpoint density. However, we note that each one
of the profiles shown in Fig. 2 represents a thread with a
different total mass, so the comparison between each other
and with the uniform density case is not so straightforward.
A more appropriate procedure would be to consider the
dependence on the total mass of the tube or, equivalently,
on its average density (see Andries et al. 2005a).

The dependence of the period ratio on the average den-
sity is shown on the right panel of Fig. 7. For a longitu-
dinally uniform thread, the period ratio is independent on
the average density. For a tube with a Lorentzian profile
it increases as the average density decreases. As shown by
Soler et al. (2015) this behaviour is not exclusive of the
Lorentzian profile but it is shared by other non-uniform
density distributions.

The analytical approximation displayed on Fig. 7 is
given by

P (n = 1)

P (n = 2)
⇡ 1 +

✓
4

⇡2
�

◆1/4

, (24)

which was derived by Soler et al. (2015) after obtaining an
empirical fit as a function of the average density,

P (n = 1)

P (n = 2)
⇡ 1 +

✓
h⇢ii
⇢i,0

◆�1/2

, (25)

using the relation given by Eq. (2) and applying the limit
� � 1. An analytical proof of the validity of this formula
was provided by Ruderman et al. (2016).

We see that the numerical results have a very good
agreement with the analytical approximation for large val-
ues of the density ratio (or small average densities), while
small differences appear in the opposite range. Prominence
threads are expected to have large density ratios, so the use
of this approximate formula to perform prominence seismol-
ogy is justified (see, e.g., Arregui & Soler 2015).

3.2.4. ⌧D,0/⌧D,1 ratio

According to Eq. (23), the damping time to period ratio in
a longitudinally homogeneous tube is independent from the
oscillation mode n as long as the longitudinal wavelength
remains much longer than the radius of the tube, that is, in
the thin tube limit. Therefore, the ratio between the damp-
ing times of the fundamental mode and the first harmonic
is the same as the ratio between the periods, that is equal
to 2.

However, it has been shown that when the tube has a
Lorentzian profile in density, the period ratio approximately
follows the relations given by Eqs. (24) and (25). We expect

that these formulas are not applicable to the ratio of damp-
ing times, since the attenuation process is mainly affected
by the transverse variation of density (see e.g., Ruderman &
Roberts 2002; Arregui et al. 2008; Soler et al. 2009) while
the oscillation period is weakly affected by this variation
but strongly depends on the longitudinal one (Andries et al.
2005b; Díaz et al. 2010; Soler et al. 2015).

Figure 8 shows the damping times ratio as a function of
� (left) and on the average density (right). In addition to
the results from the numerical simulations (red asterisks),
this plot includes the solutions of the 2D eigenvalue problem
(black solid line). We see that the damping ratio rises as
the longitudinal density ratio is increased (or the average
density is reduced) but not as fast as the period ratio (red
dotted lines).

With the goal of finding expressions similar to Eqs. (24)
and (25) for the damping ratio, we fitted the solutions of
the eigenvalue problem displayed in Fig. 8. We used the
fitting function f(X) = 1+ a1Xa2 , where f(X) is the ratio
of the damping times, X is the independent variable (� or
the ratio h⇢ii/⇢i,0), and a1 and a2 are the coefficients of the
fit. We got the following approximations:

⌧D(n = 1)

⌧D(n = 2)
⇡ 1 + �0.15 (26)

and

⌧D(n = 1)

⌧D(n = 2)
⇡ 1 + 1.05

✓
h⇢ii
⇢i,0

◆�0.34

, (27)

which are shown in Fig. 8 as light blue dotted-dashed lines.
We see that Eqs. (26) and (27) yield a better fit of the
numerical results for large values of the longitudinal density
ratio or for small values of the average density, which are
the expected ranges of values of prominence threads.

Taking into account the results displayed in Fig. 8, the
ratio ⌧D,0/⌧D,1 could be used as another seismology tool
to compute the parameters � or h⇢ii/⇢i,0 of threads and
provide results which are independent from the ones ob-
tained through the use of the period ratio. Nevertheless,
the actual usefulness of this ratio and the approximations
given by Eqs. (26) and (27) should be explored in a future
work. Soler et al. (2015) and Ruderman et al. (2016) demon-
strated that the fundamental variable that determines the
value of P0/P1 is the ratio h⇢ii/⇢i,0, with no dependence
from the specific longitudinal density profile of the thread.
A similar general behaviour has not yet been established for
the ratio ⌧D,0/⌧D,1, which might depend on other additional
factors that would constrain the range of applicability of the
approximations presented here.

3.2.5. Amplitude of the oscillations

Figure 9 shows how the average density of the tube affects
the amplitudes of the transverse oscillations of the threads
(left panel) and their periods (right panel).

In the first place, we compare two series of simula-
tions in which the amplitude of the initial perturbation is
V0 = 0.05cA,in and the fundamental mode of oscillation,
n = 1, is considered: black crosses correspond to uniform
tubes with the same density as the average density of the
Lorentzian profiles, while red asterisks show the results for
tubes with Lorentzian profiles. For a given average density,
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(24) and (25). The blue dotted-dashed lines on the left and right panels represent the fits given by Eqs. (26) and (27), respectively.

a tube with uniform density oscillates with a larger ampli-
tude and shorter period (as already shown by Fig. 7). In
addition, we see that for the case of the Lorentzian profile
the amplitude of the oscillation increases with the average
density while for a uniform thread it remains almost con-
stant.

These results for the longitudinally homogeneous tube
are in good agreement with the linear analysis for the trans-
verse kink mode in the thin tube approximation performed
by Ruderman & Goossens (2014) and Terradas et al. (2018),
who showed that the displacement of the tube is given by

A0 =
LzV0

⇡RcA,in

r
1 + ⇢ex/⇢i,0

2
=

Lz↵

⇡R

r
1 + ⇢ex/⇢i

2
. (28)

In the above formula we used the fact that in our simu-
lations the amplitude of the initial perturbation is given
by V0 = ↵cA,in. Therefore, the displacement is almost a
constant since ⇢i,0 � ⇢ex and the rest of parameters have
been kept fixed for these series of simulations. The physical
reason behind this behaviour is that all the simulations of
this series start with the same total kinetic energy, inde-
pendently from the average density of the tube.

We note that in a strict sense, Eq. (28) is only applicable
to the linear regime where A0 ⌧ 1, while our simulations
present much larger values of the displacement. However,
it seems that the predicted trend also appears in the non-
linear regime (at least for the set of parameters explored in
the present work).

The behaviour of the simulations with a Lorentzian pro-
file can be explained as follows. Although the value of �
varies throughout the series, the density at the central part
of the tube and, consequently, the internal Alfvén speed re-
main fixed, which implies that the amplitude of the initial
velocity perturbation is also fixed. Therefore, as the average
density of the tube is increased (or � is decreased) the total
kinetic energy rises, which produces oscillations of larger
amplitude.

In addition, for a given value of the averaged density,
the internal Alfvén speed of the tube with a uniform den-
sity is larger than the one with a Lorentzian profile, since
⇢i,0 is smaller in the former case. This is the reason why all
the simulations with uniform density show larger displace-
ments.

Next, we compare simulations with different density
profiles but with the same initial kinetic energy. For that, we
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Fig. 9. Displacement (left) and oscillation period (right) as functions of average density. Black crosses correspond to simulations
of tubes with uniform density and an amplitude of the initial perturbation given by V0 = 0.05cA. Red symbols represent the results
with a Lorentzian profile and V0 = 0.05cA. Blue diamonds represent simulations of tubes with uniform density but an initial kinetic
energy that is the same as the cases with the Lorentzian profile.
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Fig. 10. Same as Fig. 9 but for z = �Lz/4.

perform a new series of simulations of threads with uniform
density but varying the amplitude of the initial perturba-
tion, V0, so their total kinetic energy matches that of the
threads with a Lorentzian profile. The results of this new
series are shown in Fig. 9 as blue diamonds. Surprisingly,
we find on the left panel that the results of both series still
differ, with the amplitudes for the cases with Lorentzian
profiles being slightly larger.

An explanation for the mentioned discrepancy could be
that, although the total kinetic energy is the same, a larger
fraction of it is present in the central region of the tube in
the case of the Lorentzian profile in comparison with the
case of the uniform profile. To check the validity of this ex-
planation, we have computed the amplitude of the oscilla-
tion at a different position of the tube, namely z = �0.25Lz.
At that position, for a given value of h⇢ii/⇢i,0 the uniform
profile has a larger density (and larger kinetic energy) than
the Lorentzian profile. Therefore, smaller amplitudes would
be expected for the latter. The results of these computa-
tions are shown in Fig. 10. It can be seen that the am-
plitudes for the cases with a uniform density are slightly
larger, which agrees with the explanation provided.

Finally, the right panels of Figs. 9 and 10 show that
the results of the two series of simulations of threads with

homogeneous density overlap. Thus, we find that in these
simulations the periods of the oscillations are not affected
by the amplitude of the initial perturbation, in agreement
with the behaviour predicted by Eq. (20). However, we re-
call this formula is only strictly applicable to the linear
regime, that is, for oscillations with amplitudes A0 ⌧ 1.
Figures 9 and 10 show that the simulated oscillations have
values of A0 that go from ⇠ 0.15 to ⇠ 0.5, which means
that they are out of the range of applicability of Eq. (20).
According to Ruderman & Goossens (2014), non-linearity
produces an increase of the oscillation frequency propor-
tional to the square of the amplitude A0. More precisely,
the relation between the frequencies in the non-linear and
linear regimes is given by !nonl = !lin

�
1 +A2

0
⌥
�
, where ⌥

is a small parameter that depends on the ratio ⇢i/⇢ex and
the geometry of the flux tube. Therefore, smaller periods are
obtained as the amplitude is increased. Nevertheless, Ru-
derman & Goossens (2014) also found that the non-linear
frequency shift is usually small and it would become no-
ticeable after a large number of periods. Hence, even larger
amplitudes than the ones used here would be required to
obtain a strong variation in the oscillation periods.
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4. Forward modelling of inhomogeneous flux tubes

We perform forward modelling of our simulations to com-
pute the synthetic intensity of the H↵ line emerging from
the oscillating thread. We chose the H↵ spectral line for
the present study because it is associated with the neu-
tral component of the plasma (and, consequently, related
to low temperatures) and it is typically used for imaging of
the cool prominence fine structures (Lin 2011).

To obtain the synthetic emission of the H↵ line, we im-
plemented the approximate method developed by Heinzel
et al. (2015). We used the reference values for a prominence
at a height of 10000 km provided by Table 1 of Heinzel et al.
(2015), so the plasma in the interior of the thread has a tem-
perature of T = 10000 K, a pressure of P = 0.005 Pa and
an ionisation degree of i = 0.7. The lighter external plasma
is fully ionised, i = 1, and initially has the same pressure as
the internal plasma in order to fulfill the condition of me-
chanical equilibrium: since the internal and external densi-
ties follow the relation ⇢i,0 = 100⇢ex, the initial tempera-
ture of the external medium is T ⇡ 8.5 ⇥ 105 K. As time
advances, at every step of the simulation the ionisation de-
gree of each point of the numerical domain is computed by
performing a bilinear interpolation from the data included
in Table 1 of Heinzel et al. (2015).

In this section we increase the resolution of our simula-
tions and use a numerical domain of 400⇥ 400⇥ 100 points
instead of the 200 ⇥ 200 ⇥ 100 used for the previous sec-
tion. Increasing the numerical resolution provides a more
accurate description of the non-linear dynamics of the flux
tube. It allows to better resolve smaller scales that were
not captured by the low resolution simulations, as we show
in more detail in the paragraphs below, and obtain better
predictions of the results that can be expected from obser-
vations.

Before presenting the H↵ synthetic profiles, for reference
purposes we show in Fig. 11 density snapshots taken from
simulations with V0 = 0.05cA and n = 1. The snapshots
correspond to horizontal cuts at z = 0, where the displace-
ment is maximum. The top row shows the results for the
simulation with � = 10, while the bottom row corresponds
to � = 100. We see that up to the time t/t0 = 400 the tube
oscillates keeping its cylindrical shape almost unaltered. On
the contrary, at later times its boundary is strongly dis-
torted as the KHI vortexes develop. For detailed investi-
gations on the onset and evolution of the KHI in magnetic
flux tubes we refer the reader to the works of, e.g., Terradas
et al. (2008a), Antolin et al. (2014), Magyar et al. (2015),
Magyar & Van Doorsselaere (2016), Antolin et al. (2017),
Terradas et al. (2018) or Díaz-Suárez & Soler (2021).

The top panels of Fig. 11 can be compared with those of
Fig. 3. They represent oscillations of threads with the same
physical parameters (density profile, longitudinal oscillation
mode, and amplitude of the perturbation) but differ in the
numerical resolution employed in each simulation: the sim-
ulation depicted in Fig. 3 used a lower numerical resolution,
while the simulation represented in Fig. 11 used a higher
resolution. This comparison shows the importance of using
a higher numerical resolution (a smaller cell size) to prop-
erly simulate the evolution of the KHI. It allows to resolve
smaller scales, associated with larger azimuthal wavenum-
bers which have larger growth rates (Soler et al. 2010b),
and show more details of the development of the fine struc-
ture during the thread oscillation, as demonstrated by (An-

tolin et al. 2015). These authors also found that improving
the numerical resolution produces an increase of small-scale
vortexes without altering the global oscillation of the tube.

Then, in Fig. 12 and 13 we present the results of apply-
ing the approximate forward modelling to our simulations.
We took into account the whole 3D simulation to compute
the H↵ synthetic profile and show how the full longitudinal
structure of the flux tube would be seen in the observa-
tions, revealing in that way the effect of the inhomogeneity
in density. We considered two different lines of sight (LOS):
the first one, denoted as xLOS, is parallel to the direction
of oscillation, which goes along the x-axis; the second one,
yLOS, is perpendicular to the direction of oscillation, that is,
along the y-axis. Boths LOS are perpendicular to the lon-
gitudinal axis of the tube. In each of the panels of Figs. 12
and 13 the top and bottom panels correspond to the xLOS

and the yLOS, respectively. In addition, we have added den-
sity contours for the values ⇢ = 1.05⇢ex and ⇢ = 50⇢ex
as white dashed lines. The density contours are computed
at the plane that is perpendicular to the line of sight and
crosses the longitudinal axis of the tube, that is, the plane
x = 0 for the xLOS and the plane y = 0 for the yLOS. These
lines serve to illustrate how the whole magnetic tube, and
not only the dense central part, oscillates.

We also applied the approximate forward modelling
method to a simulation of the mode n = 2 and the lon-
gitudinal density ratio � = 10. The rest of parameters of
the equilibrium state and the initial perturbation are the
same as the ones used in the previous simulations. Fig. 14
presents several snapshots from this simulation. The density
contour ⇢ = 1.05⇢ex approximately shows how the whole
magnetic flux tube oscillates, with its maximum displace-
ment occurring at z = �12.5L0 and z = 12.5L0.

The comparison between Figs. 12 – 14 shows how im-
portant is from the observational point of view the effect
of the longitudinal distribution of density in the thread.
The central part of the tube appears much brighter than
the remaining regions. The reason is that the intensity has
an approximately quadratic dependence on the density, so
the variations of density are very strongly reflected on the
intensity profiles. It also reveals one of the main practical
problems that the field of prominence seismology has to face
when using tools like the period ratio P0/P1. On the one
hand, the H↵ line provides information about the cool and
dense central part of the flux tube and it allows to measure
the fundamental mode of oscillation. On the other hand,
the first harmonic has a node at z = 0 while its maximum
displacement takes place in the dark regions of the H↵ pro-
file (see Fig. 14). Therefore, another filter associated with
the lighter and hotter plasma would be needed to measure
the properties of this oscillation mode.

Another remarkable feature of the intensity profiles is
the development of bright and dark fringes as time ad-
vances. These fringes are the observational signatures of
the deformation of the tube boundary caused by the KHI.
The stripes are more evident when the thread is observed
along the LOS perpendicular to the direction of oscillation.
However, for the case with � = 10, they can also be seen in
the other line of sight. For � = 100, there are variations of
brightness along the xLOS but the stripes are not so easily
discerned. The development of this fine strand-like struc-
ture as a consequence of the KHI was already described by
Antolin et al. (2014, 2016, 2017) for the case of coronal loops
and by Antolin et al. (2015) for the case of prominences.
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Fig. 11. Density colour maps at z = 0 from simulations with V0 = 0.05cA, n = 1, and a numerical domain of 400 ⇥ 400 ⇥ 100
points. Top panel: case with � = 10; bottom panels: case with � = 100. Dashed lines represent the density contour ⇢ = 50⇢ref at
t = 0.
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Fig. 12. Intensity in the H↵ line at different times of the oscillation for the case with � = 10. In each snapshot the top panel
corresponds to the xLOS, while the bottom panel corresponds to the yLOS. White dashed lines show density contours for ⇢ = 1.05⇢ex
and ⇢ = 50⇢ex. An animation of this figure is available online.

There are two main differences between the results we
present in this work and the results shown by Antolin et al.
(2014, 2015, 2016, 2017). In the first place, these authors
performed forward modelling of spectral lines associated
with higher temperatures while we used a line related to
cool plasma. Therefore, our forward modelling results and
theirs can be compared qualitatively but not quantitatively.
The other difference is that Antolin et al. (2014, 2015, 2016,
2017) considered a tube model with no longitudinal varia-
tion of density. They found that the KH vortexes are present
at every longitudinal position of the tube. We expect the
same to occur in the case with the longitudinal inhomogene-
ity, although they can only be seen in the intensity profiles
near z = 0, where the plasma is denser. By inspecting den-

sity snapshots at different positions of the flux tube (which
we do not present here), we checked that this is what indeed
occurs.

In the last place, Figs. 15 and 16 show how a horizon-
tal cut at z = 0 would be seen as a function of time for
the cases with � = 10 and � = 100, respectively. Again,
the parallel and perpendicular lines of sight are displayed
in the top and bottom panels, respectively. The oscillatory
motion of the thread is more clearly appreciated in the per-
pendicular line of sight, yLOS, which allows to easily trace
the displacement of the central part of the tube, the devel-
opment of the instability and the attenuation of the oscil-
lation due to the resonant absorption. From these panels
we can also estimate that the width of the most conspicu-
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Fig. 13. Same as Fig. 12 but for the simulation with � = 100. An animation of this figure is available online.
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Fig. 14. Intensity in the H↵ line at different times of the oscillation for the case with � = 10 and n = 2 (first harmonic). In each
snapshot the top panel corresponds to the xLOS, while the bottom panel corresponds to the yLOS. White dashed lines show density
contours for ⇢ = 1.05⇢ex and ⇢ = 50⇢ex. An animation of this figure is available online.

ous bright and dark strands is on the order of w ⇠ R/5 or
R/4 (that is, from 200 to 250 km), which corresponds to an
angular diameter of � ⇠ 0.300. Therefore, these fine struc-
tures could be resolved by H↵ instruments such as CRisp
Imaging SpectroPolarimeter (CRISP Scharmer et al. 2008)
installed at the Swedish Solar Telescope (SST, Scharmer
et al. 2003) or Visible Imaging Spectrometer (VIS, Cao
et al. 2010) installed at the Goode Solar Telescope (GST,
Goode & Cao 2012), which have spatial resolutions on the
order of ⇠ 0.100(⇠ 70 km) (see e.g., Jing et al. 2019; Froment
et al. 2020). However, we note that, as already mentioned in
Section 2.1, the value of R used in this work is slightly larger
than what has been observed for prominence threads. Typ-
ically, the radius of a thread ranges from 50 km to 500 km
(Okamoto et al. 2007; Lin et al. 2008; Lin 2011), which
would give a range of 10 to 125 km for the bright and dark
fringes. Consequently, those instruments would not be able

to resolve the KH-strands of thin threads, but they would
allow to observe the fine structure of thicker threads. More
recent instruments, such as the Visible Broadband Imager
(VBI, Wöger et al. 2021), installed at the Daniel K. Inouye
Solar Telescope (DKIST, Rimmele et al. 2020), should be
able to detect strands with a width of the order of ⇠ 25 km.

On the other hand, when observed along the direction of
oscillation, the amplitude of this motion cannot be directly
determined from these time-distance diagrams. Nonethe-
less, some evidences of the oscillation can still be found:
apart from the bright and dark fringes that can be asso-
ciated with the KHI, there are also periodic variations of
brightness. These variations are related to the contractions
and expansions that appear in the tube before the KH vor-
texes develop. As shown by Antolin et al. (2017) and Ter-
radas et al. (2018), the width of the tube periodically in-
creases in the x-direction and decreases in the y-direction,
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Fig. 15. Intensity of H↵ line at z = 0 as a function of time from a simulation with a density ratio of � = 10.

-2
-1

0

1
2

-2
-1

0

1
2

y
 /

 L
0

-2
-1

0

1
2

0.0
0.2

0.4

0.6

0.8
1.0

I(
H

α
) 

/ 
I 0

0 500 1000 1500 2000
t / t0

-2
-1

0

1
2

x
 /

 L
0

0 500 1000 1500 2000

-2
-1

0

1
2

0.0
0.2

0.4

0.6

0.8
1.0

I(
H

α
) 

/ 
I 0

Fig. 16. Intensity of H↵ line at z = 0 as a function of time from a simulation with a density ratio of � = 100.

and viceversa. A contraction in one direction produces a
decrease of the H↵ intensity along the parallel line of sight
but an increase in the perpendicular line of sight, while ex-
pansions have the opposite effect. This behaviour can be
checked by comparing the top panels of Figs. 15 and 16
with their corresponding bottom panels.

By comparing Figs. 15 and 16 it can be seen that the
thread with a lower density ratio oscillates with a larger am-
plitude and a longer period, in agreement with the results
presented in Section 3.2.1. In addition, it presents larger
variations of brightness in its xLOS profile, which is a con-
sequence of having a larger amplitude of the oscillation. In
both cases, the fringes associated with the non-linear stage
of the KHI start to be clearly seen at around the same
time-step, t/t0 ⇡ 550, which is after 1 oscillation period for
� = 10 and about 1.5 periods for � = 100. It is also interest-
ing to note how the density contours follow the oscillation
of the bright region of the tube during the first periods but
they become out of phase as time advances. This is a con-
sequence of the deformations caused by the KHI and the
way the contours and the H↵ intensity are computed: the
former uses the values of density at only one plane, while
the latter is the result of integrating along the whole line of
sight (which crosses different planes with different values of
density).

5. Summary and future work

In the present work, we performed a numerical study of
the longitudinal fundamental and first harmonic modes of
transverse oscillations in inhomogeneous threads. We con-
firmed the findings of Soler et al. (2015) that, if the central
density of the tube is kept fixed, the oscillation period is
reduced as the ratio between the densities at the centre of
the tube and at its ends, �, is increased. We also confirmed
that the period ratio of the two modes, P0/P1, increases as
the longitudinal density ratio is increased, or as the average
density of the tube is decreased.

Then, we analysed the damping times of the oscillations.
The attenuation is mainly due to the process of resonant ab-
sorption (see e.g., Ionson 1978; Ruderman & Roberts 2002).
There is also a small contribution due to the non-linear gen-
eration of modes with high azimuthal wavenumber (Rud-
erman & Goossens 2014; Soler 2017), and the development
of the KHI (Terradas et al. 2018; Van Doorsselaere et al.
2021). We found that the damping times also decrease as
the longitudinal density ratio of the tube is increased. How-
ever, the damping time to period ratio increases with �,
which means that the increase of � causes a relatively larger
reduction of the oscillation periods in comparison with the
damping times. This result qualitatively agrees with those
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of Arregui et al. (2011), who considered a longitudinal den-
sity structuring and found a slight increase of the damping
ratio for very short threads (which in our model would be
represented by an increasing value of �).

In addition, a more pronounced effect of the increase of
� on the damping ratio is found for the case of the first har-
monic. The reason is that the efficiency of resonant absorp-
tion depends on the density contrast between the internal
and external densities of the flux tube and the thickness
of the radial transition layer (Ruderman & Roberts 2002;
Arregui et al. 2008; Soler et al. 2009). In the present work
the density contrast varies with height and with the longi-
tudinal density ratio �. At the height of the maximum dis-
placement of the first harmonic there are larger variations
of the density contrast with � than at the height where the
fundamental mode has its maximum displacement.

Taking into account the results described in the previ-
ous paragraphs, we proposed to use the ratio ⌧D,0/⌧D,1 in
the same way the period ratio P0/P1 is used for prominence
seismology. From the solutions of the 2D eigenvalue prob-
lem we obtained two approximate expressions, Eqs. (26)
and (27), for the dependence of ⌧D,0/⌧D,1 on the parame-
ters � and h⇢ii/⇢i,0, respectively. However, the utility of this
parameter for extracting information from the observations
should be analysed in more detail in a future work. For
instance, in contrast with the period ratio, which only de-
pends on the relation between the average density and the
density at the central part of the tube, as shown by Soler
et al. (2015) and Ruderman et al. (2016), the ratio ⌧D,0/⌧D,1

might depend on the specific longitudinal profile of density
and its application might not be as straightforward. Never-
theless, we expect that this longitudinal dependence would
be less relevant than its dependence on the profile of the
radial transition layer.

The last part of the present work consisted of perform-
ing forward modelling from our 3D simulations. We com-
puted synthetic H↵ profiles using the approximate method
developed by Heinzel et al. (2015). In this way, we showed
the effect that the Lorentzian profile of density would have
in the observations: only the central denser part of the
thread would be visible in the intensity profiles, while most
of the tube would appear dark in comparison. This is an
important issue for the field of prominence seismology. The
H↵ profiles allow to detect and measure with some ease the
characteristics of the fundamental oscillation mode, since
its maximum displacement happens at the bright part of
the thread. On the contrary, the first longitudinal harmonic
has a node in that bright central region and the maximum
displacement occurs in the dark regions, making extremely
difficult to measure the properties of this mode. We recall
that, to the best of our knowledge, no unequivocal detec-
tion of the first harmonic in prominence threads has been
reported to date. This issue can be resolved by combining
the H↵ observations with measures in spectral lines associ-
ated with the emission from lighter and hotter plasma.

Apart from the periods and damping times of the oscil-
lations and the density distribution of the thread, the in-
tensity profiles also present some observational signatures
of non-linear effects that take place as the tube oscillates.
The large amplitudes of the initial perturbations used in our
simulations cause the appearance of strong velocity shears
that trigger the KHI (Browning & Priest 1984; Terradas
et al. 2008a). This instability generates large deformations
of the external layers of the tube, as shown by Antolin et al.

(2014), Magyar et al. (2015), Magyar & Van Doorsselaere
(2016), Antolin et al. (2017) or Terradas et al. (2018). These
deformations are reflected in the H↵ profiles by longitudinal
bright and dark stripes. This is the same mechanism that
can generate the strand-like structure seen in coronal loops
(Antolin et al. 2014, 2016, 2017) and prominences (Antolin
et al. 2015). We have estimated that, for a typical promi-
nence thread, the size of this fine structure varies in the
range from 10 to 125 km. Therefore, it should be possible
to observe these fine strands in thick threads using instru-
ments such as SST/CRISP (Scharmer et al. 2003, 2008)
and GST/VIS (Cao et al. 2010; Goode & Cao 2012), which
have an H↵ spatial resolution of ⇠ 70 km, or DKIST/VBI
(Rimmele et al. 2020; Wöger et al. 2021) (with a resolution
of ⇠ 25 km).

Here, we described the dynamics of magnetic flux tubes
through the ideal MHD equations. However, prominence
threads are made of partially ionised plasma. Thus, for a
more realistic analysis, the effects of the interaction between
the ionised and neutral components of the plasma should
be taken into account. Soler et al. (2009, 2014) showed that
ambipolar diffusion has a negligible impact on the attenua-
tion of transverse oscillations in comparison with the mech-
anism of resonant absorption. Nevertheless, the ion-neutral
interaction may have an important effect on non-linear pro-
cesses, such as the heating of the plasma, specially as the
KHI develops and smaller and smaller scales are generated,
in which the energy dissipation due to ion-neutral collisons
is more efficient (Leake et al. 2005; Zaqarashvili et al. 2011;
Soler et al. 2013; Popescu Braileanu et al. 2019). In addi-
tion, this energy dissipation may oppose the action of the
ponderomotive force, as shown by Martínez-Gómez et al.
(2018) and Ballester et al. (2020) for the case of non-linear
Alfvén waves.

Other effects that influence the oscillations in flux tubes
but we did not consider are the presence of mass flows,
which have already been studied using uniform or piecewise
constant models (Terradas et al. 2008b; Soler & Goossens
2011; Erdélyi et al. 2014; Bahari et al. 2020; Sadeghi et al.
2021) but not with longitudinally inhomogeneous density
profiles, or the twist, curvature and cross section of the
tube, which have been analysed for coronal loops (Verth
& Erdélyi 2008; Verth et al. 2008; Ruderman et al. 2008;
Morton & Erdélyi 2009; Karami & Bahari 2012) but not
for prominence threads. In addition, Martínez-Gómez et al.
(2015) showed that since the plasma is partially ionised in
prominence threads, they are always unstable in the pres-
ence of longitudinal shear flows, which trigger the KHI. The
inclusion in our model of various of the aforementioned ef-
fects is left for future works.
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